Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591685

RESUMO

This work is part of a prediction challenge that invited theoretical/computational chemists to predict the photochemistry of cyclobutanone in the gas phase, excited at 200 nm by a laser pulse, and the expected signal that will be recorded during a time-resolved megaelectronvolt ultrafast electron diffraction (MeV-UED). We present here our theoretical predictions based on a combination of trajectory surface hopping with XMS-CASPT2 (for the nonadiabatic molecular dynamics) and Born-Oppenheimer molecular dynamics with MP2 (for the athermal ground-state dynamics following internal conversion), coined (NA+BO)MD. The initial conditions were sampled from Born-Oppenheimer molecular dynamics coupled to a quantum thermostat. Our simulations indicate that the main photoproducts after 2 ps of dynamics are CO + cyclopropane (50%), CO + propene (10%), and ethene and ketene (34%). The photoexcited cyclobutanone in its second excited electronic state S2 can follow two pathways for its nonradiative decay: (i) a ring-opening in S2 and a subsequent rapid decay to the ground electronic state, where the photoproducts are formed, or (ii) a transfer through a closed-ring conical intersection to S1, where cyclobutanone ring opens and then funnels to the ground state. Lifetimes for the photoproduct and electronic populations were determined. We calculated a stationary MeV-UED signal [difference pair distribution function-ΔPDF(r)] for each (interpolated) pathway as well as a time-resolved signal [ΔPDF(r,t) and ΔI/I(s,t)] for the full swarm of (NA+BO)MD trajectories. Furthermore, our analysis provides time-independent basis functions that can be used to fit the time-dependent experimental UED signals [both ΔPDF(r,t) and ΔI/I(s,t)] and potentially recover the population of photoproducts. We also offer a detailed analysis of the limitations of our model and their potential impact on the predicted experimental signals.

2.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307994

RESUMO

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

3.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317439

RESUMO

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

4.
J Phys Chem A ; 128(6): 996-1008, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236050

RESUMO

Boron-Nitrogen (B-N) Lewis adducts form a versatile family of compounds with numerous applications in functional molecules. Despite the growing interest in this family of compounds for optoelectronic applications, little is currently known about their photophysics and photochemistry. Even the electronic absorption spectrum of ammonia borane, the textbook example of a B-N Lewis adduct, is unavailable. Given the versatility of the light-induced processes exhibited by these molecules, we propose in this work a detailed theoretical study of the photochemistry and photophysics of simple B-N Lewis adducts. We used advanced techniques in computational photochemistry to identify and characterize the possible photochemical pathways followed by ammonia borane and extended this knowledge to the substituted B-N Lewis adducts pyridine-borane and pyridine-boric acid. The photochemistry observed for this series of molecules allows us to extract qualitative rules to rationalize the light-induced behavior of more complex B-N-containing molecules.

5.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059547

RESUMO

Conical intersections constitute the conceptual bedrock of our working understanding of ultrafast, nonadiabatic processes within photochemistry (and photophysics). Accurate calculation of potential energy surfaces within the vicinity of conical intersections, however, still poses a serious challenge to many popular electronic structure methods. Multiple works have reported on the deficiency of methods like linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) or algebraic diagrammatic construction to second-order [ADC(2)]-approaches often used in excited-state molecular dynamics simulations-to describe conical intersections between the ground and excited electronic states. In the present study, we focus our attention on conical intersections between excited electronic states and probe the ability of AA LR-TDDFT and ADC(2) to describe their topology and topography, using protonated formaldimine and pyrazine as two exemplar molecules. We also take the opportunity to revisit the performance of these methods in describing conical intersections involving the ground electronic state in protonated formaldimine-highlighting in particular how the intersection ring exhibited by AA LR-TDDFT can be perceived either as a (near-to-linear) seam of intersection or two interpenetrating cones, depending on the magnitude of molecular distortions within the branching space.

6.
J Phys Chem Lett ; 14(51): 11625-11631, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100675

RESUMO

The observable nature of topological phases related to conical intersections in molecules is studied. Topological phases should be ubiquitous in molecular processes, but their elusive character has often made them a topic of discussion. To shed some light on this issue, we simulate the dynamics governed by a Jahn-Teller Hamiltonian and analyze it employing two theoretical representations of the molecular wave function: the adiabatic and the exact factorization. We find fundamental differences between effects related to topological phases arising exclusively in the adiabatic representation, and thus not related to any physical observable, and geometric phases within the exact factorization that can be connected to an observable quantity. We stress that while the topological phase of the adiabatic representation is an intrinsic property of the Hamiltonian, the geometric phase of the exact factorization depends on the dynamics that the system undergoes and is connected to the circulation of the nuclear momentum field.

7.
ACS Earth Space Chem ; 7(11): 2275-2286, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38026808

RESUMO

The wavelength control of photochemistry usually results from ultrafast dynamics following the excitation of different electronic states. Here, we investigate the CF3COCl molecule, exhibiting wavelength-dependent photochemistry both via (i) depositing increasing internal energy into a single state and (ii) populating different electronic states. We reveal the mechanism behind the photon-energy dependence by combining nonadiabatic ab initio molecular dynamics techniques with the velocity map imaging experiment. We describe a consecutive mechanism of photodissociation where an immediate release of Cl taking place in an excited electronic state is followed by a slower ground-state dissociation of the CO fragment. The CO release is subject to an activation barrier and is controlled by excess internal energy via the excitation wavelength. Therefore, a selective release of CO along with Cl can be achieved. The mechanism is fully supported by both the measured kinetic energy distributions and anisotropies of the angular distributions. Interestingly, the kinetic energy of the released Cl atom is sensitively modified by accounting for spin-orbit coupling. Given the atmospheric importance of CF3COCl, we discuss the consequences of our findings for atmospheric photochemistry.

8.
J Phys Chem A ; 127(35): 7400-7409, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37556330

RESUMO

Nonadiabatic molecular dynamics offers a powerful tool for studying the photochemistry of molecular systems. Key to any nonadiabatic molecular dynamics simulation is the definition of its initial conditions (ICs), ideally representing the initial molecular quantum state of the system of interest. In this work, we provide a detailed analysis of how ICs may influence the calculation of experimental observables by focusing on the photochemistry of methylhydroperoxide (MHP), the simplest and most abundant organic peroxide in our atmosphere. We investigate the outcome of trajectory surface hopping simulations for distinct sets of ICs sampled from different approximate quantum distributions, namely harmonic Wigner functions and ab initio molecular dynamics using a quantum thermostat (QT). Calculating photoabsorption cross-sections, quantum yields, and translational kinetic energy maps from the results of these simulations reveals the significant effect of the ICs, in particular when low-frequency (∼ a few hundred cm-1) normal modes are connected to the photophysics of the molecule. Overall, our results indicate that sampling ICs from ab initio molecular dynamics using a QT is preferable for flexible molecules with photoactive low-frequency modes. From a photochemical perspective, our nonadiabatic dynamics simulations offer an explanation for a low-energy tail observed at high excitation energy in the translational kinetic energy map of MHP.

9.
Theor Chem Acc ; 142(8): 66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520272

RESUMO

Full multiple spawning (FMS) offers a strategy to simulate the nonadiabatic dynamics of molecular systems by describing their nuclear wavefunctions by a linear combination of coupled trajectory basis functions (TBFs). Applying a series of controlled approximations to the full multiple spawning (FMS) equations leads to the ab initio multiple spawning (AIMS), which is compatible with an on-the-fly propagation of the TBFs and an accurate description of nonadiabatic processes. The AIMS strategy and its numerical implementations, however, rely on a series of user-defined parameters. Herein, we investigate the influence of these parameters on the electronic-state population of two molecular systems- trans-azomethane and a two-dimensional model of the butatriene cation. This work highlights the stability of AIMS with respect to most of its parameters, underlines the specific parameters that require particular attention from the user of the method, and offers prescriptions for an informed selection of their value. Supplementary Information: The online version contains supplementary material available at 10.1007/s00214-023-03004-w.

10.
J Phys Chem Lett ; 13(51): 12011-12018, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36541684

RESUMO

Ab initio multiple-spawning (AIMS) describes the nonadiabatic dynamics of molecules by expanding nuclear wave functions in a basis of traveling multidimensional Gaussians called trajectory basis functions (TBFs). New TBFs can be spawned whenever nuclear amplitude is transferred between electronic states due to nonadiabatic transitions. While the adaptive size of the TBF basis grants AIMS its characteristic accuracy in describing nonadiabatic processes, it also leads to a fast and uncontrolled growth of the number of TBFs, penalizing computational efficiency. A different flavor of AIMS, called AIMS with informed stochastic selections (AIMSWISS), has recently been proposed to reduce the number of TBFs dramatically. Herein, we test the performance of AIMSWISS for a series of challenging nonadiabatic processes─photodynamics of two-dimensional model systems, 1,2-dithiane and chromium (0) hexacarbonyl─and show that this method is robust and extends the range of molecular systems that can be simulated within the multiple-spawning framework.

11.
J Phys Chem A ; 126(32): 5420-5433, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35900368

RESUMO

The photochemical reactions triggered by the sunlight absorption of transient volatile organic compounds in the troposphere are notoriously difficult to characterize experimentally due to the unstable and short-lived nature of these organic molecules. Some members of this family of compounds are likely to exhibit a rich photochemistry given the diversity of functional groups they can bear. Even more interesting is the photochemical fate of volatile organic compounds bearing more than one functional group that can absorb light─this is the case, for example, of α-hydroperoxycarbonyls, which are formed during the oxidation of isoprene. Experimental observables characterizing the photochemistry of these molecules like photoabsorption cross-sections or photolysis quantum yields are currently missing, and we propose here to leverage a recently developed computational protocol to predict in silico the photochemical fate of 2-hydroperoxypropanal (2-HPP) in the actinic region. We combine different levels of electronic structure methods─SCS-ADC(2) and XMS-CASPT2─with the nuclear ensemble approach and trajectory surface hopping to understand the mechanistic details of the possible nonradiative processes of 2-HPP. In particular, we predict the photoabsorption cross-section and the wavelength-dependent quantum yields for the observed photolytic pathways and combine them to determine in silico photolysis rate constants. The limitations of our protocol and possible future improvements are discussed.

12.
Chem Sci ; 13(18): 5205-5219, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655553

RESUMO

Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.

14.
Angew Chem Int Ed Engl ; 61(24): e202202193, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343025

RESUMO

Herein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation. While this modification is deleterious to photoluminescence, it enables formation of extended polycyclic frameworks by Mallory reactions. We exploit this dichotomy (i) to manipulate emission properties in a controlled manner and (ii) as a synthetic tool to link together pairs of phenyl rings in a specific sequence. This method to alter the tendency of oligoaryl alkenes to undergo photocyclization can inform the design of solid-state emitters that avoid this quenching mechanism, while also allowing selective cyclization in syntheses of polycyclic aromatic hydrocarbons.

15.
Nat Commun ; 13(1): 937, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177613

RESUMO

The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich. Using photoelectron imaging and computational chemistry, we show that photoexcitation by UVA light leads to the formation of CO2, CO, and CH3-. The observation of the unusual methide anion formation and its subsequent decomposition into methyl radical and a free electron may hold important consequences for atmospheric chemistry. From a mechanistic perspective, the initial decarboxylation of pyruvate necessarily differs from that in pyruvic acid, due to the missing proton in the anion.

16.
J Phys Chem A ; 126(7): 1263-1281, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35157450

RESUMO

The Born-Oppenheimer picture has forged our representation and interpretation of photochemical processes, from photoexcitation down to the passage through a conical intersection, a funnel connecting different electronic states. In this work, we analyze a full in silico photochemical experiment, from the explicit electronic excitation by a laser pulse to the formation of photoproducts following a nonradiative decay through a conical intersection, by contrasting the picture offered by Born-Oppenheimer and that proposed by the exact factorization. The exact factorization offers an alternative understanding of photochemistry that does not rely on concepts such as electronic states, nonadiabatic couplings, and conical intersections. On the basis of nonadiabatic quantum dynamics performed for a two-state 2D model system, this work allows us to compare Born-Oppenheimer and exact factorization for (i) an explicit photoexcitation with and without the Condon approximation, (ii) the passage of a nuclear wavepacket through a conical intersection, (iii) the formation of excited stationary states in the Franck-Condon region, and (iv) the use of classical and quantum trajectories in the exact factorization picture to capture nonadiabatic processes triggered by a laser pulse.

17.
Phys Chem Chem Phys ; 24(3): 1305-1309, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984423

RESUMO

Photoactive proteins typically rely on structural changes in a small chromophore to initiate a biological response. While these changes often involve isomerization as the "primary step", preceding this is an ultrafast relaxation of the molecular framework caused by the sudden change in electronic structure upon photoexcitation. Here, we capture this motion for an isolated model chromophore of the photoactive yellow protein using time-resolved photoelectron imaging. It occurs in <150 fs and is apparent from a spectral shift of ∼70 meV and a change in photoelectron anisotropy. Electronic structure calculations enable the quantitative assignment of the geometric and electronic structure changes to a planar intermediate from which the primary step can then proceed.


Assuntos
Proteínas de Bactérias/química , Compostos Cromogênicos/química , Ácidos Cumáricos/química , Fotorreceptores Microbianos/química , Compostos Cromogênicos/efeitos da radiação , Ácidos Cumáricos/efeitos da radiação , Isomerismo , Luz , Processos Fotoquímicos/efeitos da radiação
18.
ACS Earth Space Chem ; 6(1): 207-217, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087992

RESUMO

Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.

19.
J Chem Phys ; 155(17): 174119, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742188

RESUMO

Full multiple spawning (FMS) offers an exciting framework for the development of strategies to simulate the excited-state dynamics of molecular systems. FMS proposes to depict the dynamics of nuclear wavepackets by using a growing set of traveling multidimensional Gaussian functions called trajectory basis functions (TBFs). Perhaps the most recognized method emanating from FMS is the so-called ab initio multiple spawning (AIMS). In AIMS, the couplings between TBFs-in principle exact in FMS-are approximated to allow for the on-the-fly evaluation of required electronic-structure quantities. In addition, AIMS proposes to neglect the so-called second-order nonadiabatic couplings and the diagonal Born-Oppenheimer corrections. While AIMS has been applied successfully to simulate the nonadiabatic dynamics of numerous complex molecules, the direct influence of these missing or approximated terms on the nonadiabatic dynamics when approaching and crossing a conical intersection remains unknown to date. It is also unclear how AIMS could incorporate geometric-phase effects in the vicinity of a conical intersection. In this work, we assess the performance of AIMS in describing the nonadiabatic dynamics through a conical intersection for three two-dimensional, two-state systems that mimic the excited-state dynamics of bis(methylene)adamantyl, butatriene cation, and pyrazine. The population traces and nuclear density dynamics are compared with numerically exact quantum dynamics and trajectory surface hopping results. We find that AIMS offers a qualitatively correct description of the dynamics through a conical intersection for the three model systems. However, any attempt at improving the AIMS results by accounting for the originally neglected second-order nonadiabatic contributions appears to be stymied by the hermiticity requirement of the AIMS Hamiltonian and the independent first-generation approximation.

20.
J Chem Phys ; 154(21): 211106, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240975

RESUMO

Ab initio multiple spawning (AIMS) offers a reliable strategy to describe the excited-state dynamics and nonadiabatic processes of molecular systems. AIMS represents nuclear wavefunctions as linear combinations of traveling, coupled Gaussians called trajectory basis functions (TBFs) and uses a spawning algorithm to increase as needed the size of this basis set during nonadiabatic transitions. While the success of AIMS resides in this spawning algorithm, the dramatic increase in TBFs generated by multiple crossings between electronic states can rapidly lead to intractable dynamics. In this Communication, we introduce a new flavor of AIMS, coined ab initio multiple spawning with informed stochastic selections (AIMSWISS), which proposes a parameter-free strategy to beat the growing number of TBFs in an AIMS dynamics while preserving its accurate description of nonadiabatic transitions. The performance of AIMSWISS is validated against the photodynamics of ethylene, cyclopropanone, and fulvene. This technique, built upon the recently developed stochastic-selection AIMS, is intended to serve as a computationally affordable starting point for multiple spawning simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...